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TWO kinds of experiment were made in the wake of a cylinder a t  Reynolds numbers 
ranging between 20 and 150. One was a close look a t  the structure of the vortex street 
with a stationary cylinder a t  Reynolds numbers greater than 48. The other experiment 
was made a t  lower Reynolds numbers with a cylinder vibrating normal to the flow 
direction. I n  this case an artificially induced small-amplitude fluctuation grows 
exponentially with the rate predicted by the stability theory. Because of the similarity 
between the two kinds of wake, we postulate that  the shedding of the vortex a t  low 
Reynolds numbers is initiated by the linear growth, namely, the fluctuation with the 
frequency of maximum linear growth rate develops into vortex streets. By using the 
measured width of the wake a t  the stagnation point in the wake and the result of 
the stability theory, we could calculate the Strouhal number for Reynolds numbers 
ranging from 48 to 120. The predicted Strouhal numbers agree well with the values 
from direct measurements. 

1. Introduction 
Although there are many investigations on the vortex shedding from a cylinder, 

the mechanism by which the shedding frequency is determined is not yet clear. I n  
other words, the empirical relation between the shedding frequency and Reynolds 
number established by Roshko (1954) and other investigators has not been adequately 
explained. There are many approaches to the problem. One is to use the vortex model. 
The roll-up of the shear layer separated from the surface of the cylinder results in the 
formation of the vortex street. When the Reynolds number is sufficiently high, the 
roll-up takes place alternately at both sides of the cylinder and vortices are shed 
alternately into the wake. The geometrical arrangement of the vortices is determined 
by von K&rm&n’s theory. If we make detailed experiments, however, we find that the 
ratio of longitudinal to lateral spacings of the vortex street is different from von 
Khrrnbn’s value. Moreover, the shedding frequency is not determined by this model. 

Another approach is the use of the linear or nonlinear stability theory. The linear 
stability theory of shear flows predicts growth rates of small-amplitude fluctuations. 
Among fluctuations with various frequencies there is a fluctuation of the maximum 
growth rate, I n  fact, in the wake behind a thin flat plate placed parallel to  the flow a 
small-amplitude fluctuation grows exponentially and the frequency of the fluctuation 
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existing in the wake corresponds to that of the maximum growth rate due to the 
linear stability theory (Sato & Kuriki 1961; Mattingly & Criminale 1972). I n  experi- 
ments behind a cylinder a t  high Reynolds number, however, exponential growth of 
the fluctuation has not been found. I n  fact, the sinusoidal fluctuation in the wake decays 
downstream. Therefore, the shedding frequency cannot be determined by the linear 
theory. The formation of the vortex street is a nonlinear closed process which has a 
very sharp selectivity in the frequency. This process includes a strong interaction 
between the mean-velocity field and the fluctuation. 

The vortex street is not formed a t  Reynolds numbers below about 40. By intro- 
ducing an artificial disturbance into the wake at Reynolds numbers slightly below 
40 we may be able to observe the growth of the disturbance, which may eventually 
lead to the formation of an artificial vortex street. If this process really occurs, we may 
imagine the same process taking place a t  higher Reynolds numbers. This is the motiva- 
tion for the present investigation. It is a direct extension of the previous work on the 
flow around a cylinder at low Reynolds numbers (Nishioka & Sat0 1974). It begins 
with a close look a t  the mean and fluctuating velocities around the cylinder a t  low 
Reynolds numbers. Then the streamwise variations of an artificial disturbance super- 
posed a t  lower Reynolds numbers is observed. The observed growth rate of the 
fluctuation is compared with results of the linear stability theory at  various Reynolds 
numbers. The shedding frequency from a stationary cylinder is also compared with 
these results and the possibility of connecting observed Strouhal numbers with 
stability theory is investigated. 

2. Experimental arrangement 
The whole experiment was conducted in a suction-type low-speed wind tunnel with 

a test section of 20 x 2Ocm cross-section and 60cm in length. The wind speed in the 
test section was varied between 10 and 100 cm/s. The distribution of the mean velocity 
in the test section was uniform within 2 per cent except in the boundary layers along 
walls. The residual turbulence in the test section measured by a hot-wire anemometer 
with a low-cut filter of 8Hz was about 0.01 per cent at the wind speed 20cm/s. The 
turbulence level was the same at 70 cm/s with a low-cut filter of 15 Hz. Measurements 
of mean and fluctuating velocities were made by a constant-temperature hot-wire 
anemometer. The hot wire was mounted on a traversing mechanism with an orientation 
such as to pick up u-fluctuations. A linearizer was specially designed and constructed 
for the measurements at wind speeds below 150 cm/s (Nishioka 1973). It was necessary 
to take into account the deviation from the conventional King’s law a t  these extremely 
low wind speeds. The calibration of the anemometer was made by the periodic heat- 
wake method. The met hod employs two hot wires placed parallel with variable spacing 
in the direction of flow. The upstream wire is heated by an alternating current of 
known frequency. The periodic heat wake of the upstream wire is picked up by the 
downstream wire. By changing the spacing we obtain the wavelength, hence the wind 
speed. Details of the wind tunnel, the calibration procedure and the problems associated 
with measurements a t  low wind speeds are found in the previous paper (Nishioka & 
Sato 1974). 

A Bakelite rod (3.0 mm in diameter) was spanned vertically in the test section and 
used for the natural vortex shedding experiment. Reynolds numbers, R = U, d/v, 
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FIGURE 1.  Arrangement for experiment with vibrating cylinder. 

from 40 to 200 were covered by the use of the rod. The experiment with a forced vibra- 
tion was made with a plastic pipe with an insertion of thin phosphor-bronze ribbon. A 
pipe with a diameter of 2.0mm covers Reynolds numbers between 20 and 40 and 
a pipe with a diameter of 3.0 mm was used for higher Reynolds numbers. The pipe 
was 17 cm long. The ribbon protruded from the ceiling and floor of the test section arid 
an adequate tension was given by a weight as shown in figure 1.  The pipe was forced 
to vibrate either parallel or normal to  the flow by the electromagnetic force caused by 
a permanent magnet and an alternating current through the phosphor-bronze ribbon. 
It was ascertained that the cylinder vibrated with the same amplitude and phase at 
all points along the axis. The amplitude of vibration was measured by a telescope 
from outside. The amplitude was varied between 4 and15 per cent of the diameter. 
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FIGURE 2. Mean-velocity distributions in wake at R = 48 and 70. Left half: R = 48; , X / d  = 1.0; 
0, X / d  = 3.2. Right half: R = 70; m, X / d  = 1.0; 0, X / d  = 1.8; m, X / d  = 3.2. Data points 
with flags are not accurate. 

The X axis is taken in the flow direction, the 2 axis is along the cylinder and the 
Y axis is perpendicular to both axes with the origin a t  the mid-point of the axis of the 
cylinder. 

3. Vortex shedding from a stationary cylinder 
I n  the experiment with a stationary cylinder a weak sinusoidal fluctuation was 

observed near the stagnation point in the wake (the downstream edge of a pair of 
standing eddies behind the cylinder) when the Reynolds number exceeded 48. The 
mean velocity distributions in the wake at Reynolds numbers 48 and 70 are illustrated 
in figure 2 .  The mean velocity a t  R = 48 measured a t  X / d  = 1 (inside the standing 
eddies) shows a non-minimum value on the centre-line. The hot-wire anemometry 
in the low-speed near wake involves difficult problems, such as the nonlinearity, the 
rectifying effect, and large variations of flow direction. The linearization was achieved 
by an analog device as described in Nishioka & Sat0 (1974). There still remain un- 
certainties due to the variation of flow direction. Flags on data points in figure 2 
indicate that they are not accurate. The actual distributions might be those indicated 
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FIGURE 3. Length of eddies behind cylinder us. Reynolds nurnbcr. Experimental results: , 
present work; @, Nishioka & Sato; A, Taneda; A, Acrivos et al. Numerical results: m, Takami 
& Keller; B, Dennis & Cliang. 

by broken lines, The distribution shows a velocity overshoot between 1 Y / d (  = I and 
5. This is due to the acceleration a t  the ‘shoulder’ of the cylinder. These features are 
almost the same a t  R = 70. Distributions at  higher Reynolds numbers up to 200 are 
alike. The position of the stagnation point was determined by the extrapolation of the 
centre-line velocities measured at  large X l d .  The result is shown in figure 3 together 
with other theoretical and experimental results. Taneda (1956) showed the existence of 
standing eddies for Reynolds numbers up to 150 by flow-visualization techniques. The 
points near the straight line in the figure are results when there is no vortex shedding. 
On the other hand, the present results with a slight decrease a t  higher Reynolds 
numbers are accompanied by the vortex shedding. The shedding is suppressed when 
the aspect ratio of the cylinder is small. Our previous data (Nishioka & Sato 1974) 
were obtained with an aspect ratio of 6-5 in contrast to the present experiment with 
the ratio 67. It is obvious that the formation of the vortex street changes the nature of 
the wake significantly. 

The wave form of the fluctuation in the wake is periodic and steady up to a Reynolds 
number of 200. The two-dirnensionality of the intensity of fluctuation is also good. 
No difference was found in the Y distributions of 2 a t  various Z stations for 
- 8 < Z/d < 10. On the other hand, the phase of fluctuation changes in the Z direc- 
tion. The phase change in Z is almost linear. This change suggests the inclination of 
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FIGURE 4. Equi-intensity lines of u-fluctuation at R = 70 
(upper half) and 120 (lower half). 
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FIGURE 5. Streamwise variations of the maximum fluctuation intensity, 
(s)* max/U,: 0, R = 70; A, R = 90; 0, R = 120; 0 ,  R = 150. 
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vortices in the flow direction. The angle of inclination is about 17O, 18", 20" and 19' 
at R = 63, 90, 120 and 150, respectively. One possible reason for the inclination is the 
difference in the flows at both ends of the cylinder. 

The equi-intensity lines of the u fluctuation in the wake are shown in figure 4 for 
Reynolds numbers 70 and 120. The maximum of the fluctuation amplitude is found a t  
X / d  = 3.5 at R = 70 and 2.3 a t  R = 120. The point of maximum fluctuation moves 
upstream as the Reynolds number is increased. It is more clearly demonstrated in 
figure 5, in which the streamwise variation of the maximum of ( 2 ) t  in the Y distri- 
bution a t  each Y station is plotted in a semi-logarithmic scale. As the Reynolds number 
is increased the X station of maximum 3 moves close to the cylinder and the maximum 
value increases. At small X / d  the growth is exponential. This exponential growth 
takes place mostly inside the standing eddies behind the cylinder. The region of the 
exponential growth becomes narrower a t  higher Reynolds number. This suggests that 
at sufficiently high Reynolds numbers the exponential growth does not exist a t  all 
in the wake. The growth rates a t  four Reynolds numbers in figure 5 are almost the 
same. It must be noted, however, that  the amplitude of fluctuation a t  high Reynolds 
numbers exceeds 30 per cent at X / d  = 2. They are not 'small' fluctuations and the 
comparison with the linearized theory is meaningless. At low Reynolds numbers 
amplitudes are small. The growth seems to be the so-called linear growth when the 
Reynolds number is below 70. 

4. Fluctuations in the wake of a vibrating cylinder 
When the cylinder vibrates normal to  the flow, a periodic velocity fluctuation is 

created in the wake. The fluctuation grows or decays in the flow direction. For 
Reynolds numbers below 20 no growth takes place. For Reynolds numbers above 48 
a natural fluctuation appears without forcing. Therefore, the detailed experiment 
with a vibrating cylinder was made between these two Reynolds numbers. The growth 
and decay of the fluctuation depend on the amplitude and frequency of the vibration. 
An example of the effect of the amplitude a t  R = 30 is shown in figure 6, in which the 
maximum intensity a t  each X station (G)amax/tL is plotted against X / d .  For small 
vibration amplitudes, a /d  = 0.04 and 0-08, the fluctuation grows almost exponentially 
a t  small X, levels off a t  around X / d  = 8 and decreases further downstream. The rate 
of exponential growth at small X is almost the same for two vibration amplitudes. 
The mean velocity distribution with a / d  = 0-08 coincides with that without vibration 
within 2 per cent close behind the cylinder. For a large amplitude, a / d  = 0-15, 
(g)imax/Um is about 0.05 a t  S / d  = 2 and decreases downstream monotonically. 
Obviously, if the initial amplitude is too large, the exponential growth does not take 
place. 

The effect of the frequency of the vibration was examined with small vibration 
amdlitudes (a /d  < 0.08), as shown in figure 7 .  The Reynolds number was 40 and the 
frequency of vibration was changed from 6 t o  25 Hz. If the frequency is between 
14 Hz and 20 Hz, the fluctuation grows exponentially. The 9 Hz fluctuation stays 
almost unchanged and the 6 Hz fluctuation decays. The non-dimensional growth rate 
- ai is calculated from - ai = d In [(~2)&,.&7,]/d(X/b) as a function of the non- 
dimensional frequency, j3 = 2nfb/Um, where b is the half-value width of the wake. The 
wavelength in the X direction, h was determined by the phase measurement. The 
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FIGURE 6. The streamwise development of a sinusoidal fluctuation(f = 12 H z ,  R = 30) withvarious 
cylinder amplitudes, a /& 0, a i d  = 0.04: 0, a l d  = 0.08; 0 ,  a / d  = 0.15. 
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FIGURE 7. Streamwise growth and decay of small fluctuations at R = 40: 0, f = 6 H z ;  0, 
f = 9 H z ;  @,f=  l O H z ; @ , f =  1 4 H z ; @ , f =  1 6 H z ; e , f =  l S H z ; O , f =  2 0 H z ; @ , f =  25Hz .  
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FIGURE 8. Fluctuation eigenvalues. (a)  Wavenumber a, us. angular frequency /3. ( b )  Spatial growth 
rate -a, 1's. angular frequency, p. Vibrating cylinder: 0 ,  R = 30; 0, R = 40; 0, R = 46.5. 
Natural fluctuation: A, R = 70; V ,  R = 90; A, R = 120. Nakaya's calculations: -.- R,  = 30; 
-, Rb = 40. 

non-dimensional wavenumber a, is defined as Snb/h. Both a, and -ai are plotted 
against /3 in figures 8 ( a )  and ( b ) .  The wavenumber a, increases rapidly with /3 a t  three 
Reynolds numbers. The growth rate -a,  is large for high Reynolds numbers and has 
a peak a t  around /3 = 0.5. The selectivity is sharper a t  higher Reynolds numbers. In  
both figures theoretical results on eigenvalues for spatial growth by Nakaya (1976) 
are added for comparison. I n  his calculation the velocity on the centre-line is zero 
and the Reynolds number Rb is defined by U, b/v .  Our measurements show that 
d + 1-3b ,  therefore, R, = 30 and 40 correspond roughly to R = 40 and 50, respectively. 
The agreement between experimental and theoretical results is good, for both a, and 
--ai. There is about 10 per cent discrepancy for /3 with maximum growth rate [figure 
8 ( b ) ] .  This may be attributed to  a slight difference in experimental and theoretical 
mean velocity distributions. 

Distributions of the amplitude and phase ofu fluctuations a t  two different Reynolds 
numbers are shown in figure 9. Frequencies of the vibration are 12Hz and 8.8Hz a t  
R = 30 and 46-5, respectively. The maximum r.m.s. values are about O*OlU, in both 
cases. Distributions of the amplitude at two different Reynolds numbers are almost 
the same with two maxima a t  around I Y/dl = 0.5. There is a 180 degree phase dif- 
ference a t  two symmetrical points with respect to the centre-line. Theoretical curves 
by Nakaya (1976) are also shown. The agreement between the two results is fairly 

An experiment with the vibration parallel to the flow was also made a t  R = 30. In  
this case the u fluctuation is symmetric with respect to  the centre-line a t  X / d  = 1 
but becomes antisymmetric a t  S / d  2 3. This fact suggests that  antisymmetric 
fluctuations have higher growth rates than symmetric fluctuations. This result 
agrees with the linear stability theory which predicts larger growth rate for anti- 
symmetric fluctuation. Therefore, only antisymmetric disturbances were examined 
in detail. 

From these experimental results we conclude that in the wake of a vibrating 
cylinder we can excite sinusoidal fluctuations which grow in the flow direction as 

good. 
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FIUURE 9. Distributions of amplitude and phase of sinusoidal fluctuations. Experimental con- 
ditions (R, d,  X / d , f ) :  ., (30, 24mm, 5 ,  12Hz); 0, (46.5, 3.0mm, 2.5, 8.8Hz).Fulllinesrepresent 
theoretical results of Nakaya; R, = 40, p = 0.48. 

predicted by the linear stability theory, and form a vortex street behind the cylinder 
similar to the one a t  higher Reynolds numbers. 

5. Mechanism of determining shedding frequency 
In  the experiment with a stationary cylinder sinusoidal fluctuations were observed 

in the wake when the Reynolds number exceeded 48. This critical Reynolds number 
is a little higher than the value 40 which is generally accepted. One possible reason for 
the higher value is the low residual turbulence in the test section of the present 
experiment. If the turbulence is reduced further, the critical Reynolds number may 
become higher. In  the experiment with a vibrating cylinder at Reynolds numbers 
between 20 and 48 we observed the exponential growth of the sinusoidal velocity 
fluctuation, which developed into a vortex street. The growth is selective, in other 
words, fluctuations in a certain frequency range grow. The non-dimensional frequency 
for maximum growth is around p,,, = 0.5 as shown in figure 8. We can calculate a 
fictitious Strouhal number at Reynolds numbers between 20 and 48 by the relation 
St = fd/Um = pm(d/2nb). If we use the experimental value of d l b  and Nakaya's 
theoretical value 0.48 for p,, we obtain St = 0.1. 

We extend the calculation to higher Reynolds numbers for which natural vortex 
shedding takes place. In  this case b changes in the flow direction. So we take b at the 
X station of the stagnation point in the wake. The calculated Strouhal number is 
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FIGURE 10. Strouhal number us. Reynolds number. Experimental results: 0, present work; 0, 
Berger & Wille; a. Roshko. Solid circles are values calculated with ljrn = 0.48 and experimental 
values of b / d  a t  wake stagnation point. 

shown in figure 10 by closed circles. The directly measured Strouhal number is shown 
by open circles. Results by Roshko (1954) and Berger & Wille (1972) are also shown. 
Calculated results agree very well with present experimental results. Thus we may 
state that the shedding frequency at Reynolds numbers between 48 and 70 is deter- 
mined by the selective linear growth of small fluctuations. 

At higher Reynolds numbers nonlinear effects are predominant. Because of the high 
growth rate a t  high Reynolds numbers, the amplitude of fluctuation becomes large 
in the standing eddies. Therefore, the eddies are deformed and the mean velocity 
distribution around the cylinder is modified. This in turn results in the change of 
frequency of the fluctuation of maximum growth rate. The actual process is not this 
kind of successive process. Both take place simultaneously and they cannot be separ- 
ated. But if we take the measured velocity distribution at the stagnation point in the 
wake, the shedding frequency is predictable up to R = 120 as shown in figure 10. The 
growth rates of natural fluctuations calculated from data in figure 5 are shown in 
figure 8 (b) by triangles. They are compared with Nakaya’s result a t  R, = 40. Although 
theoretical results at higher Reynolds numbers are not available, the natural fluctua- 
tion seems to be the fluctuation with maximum growth rate. This fact has been found 
in various flow fields. At higher Reynolds numbers the region of growth of fluctuation 
moves upstream. It takes place at  both sides of the cylinder and even in front of the 
cylinder. The mechanism of determining the shedding frequency is not clear in these 
cases because there is no distinct ‘linear region’. 

The effect of turbulence on the shedding frequency was discussed by Berger & 
Wille (1972). They found experimentally that the Strouhal numbers around 

40 < R < 160 

are different for different free-stream turbulence. This fact can be explained as 
follows. If the turbulence level is higher in the free stream, a high-intensity fluctuation 
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appears a t  smaller X and the nonlinear interaction also occurs at small X .  The flow 
around the cylinder might be a little different from that with lower turbulence level 
in which nonlinear interaction takes place a t  larger X .  This difference in the flow 
field around the cylinder results in different Strouhal numbers. It is not yet clear if 
this difference leads to two distinct families of Strouhal numbers as pointed out by 
Tritton (1959) and others. 
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